6,320 research outputs found

    All or Nothing at All

    Get PDF
    We continue a study of unconditionally secure all-or-nothing transforms (AONT) begun in \cite{St}. An AONT is a bijective mapping that constructs s outputs from s inputs. We consider the security of t inputs, when s-t outputs are known. Previous work concerned the case t=1; here we consider the problem for general t, focussing on the case t=2. We investigate constructions of binary matrices for which the desired properties hold with the maximum probability. Upper bounds on these probabilities are obtained via a quadratic programming approach, while lower bounds can be obtained from combinatorial constructions based on symmetric BIBDs and cyclotomy. We also report some results on exhaustive searches and random constructions for small values of s.Comment: 23 page

    A reconfigurable H-shape antenna for wireless applications

    Get PDF
    The official published version of this article can be obtained from the link below - Copyright @ EuCAP2010This paper presents a novel H-Shaped reconfigurable microstrip patch antenna fed by a Grounded Coplanar Waveguide (GCPW) for wireless applications. The uniqueness in the presented antenna design relies in the ability to select the number of operating frequencies electronically by using a varactor diode. The antenna structure consists of coplanar waveguide (CPW) input with an H-shape printed on a PCB and a varactor diode for reconfigurability. By electronically varying the value of the diode capacitance, the antenna can operate in a single band mode to cover Global Position System (GPS), a dual band mode to cover GPS and Global System for Mobile communications (GSM1900) or a three-band mode to cover GPS, GSM1900 and Bluetooth or Wireless Local Area Networks (WLAN)

    Pair correlations and random walks on integers

    Get PDF

    A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEA reconfigurable wideband and multiband C-Slot patch antenna with dual-patch elements is proposed and studied. It occupies a compact volume of 50 × 50 × 1.57 (3925 mm3), including the ground plane. The antenna can operate in two dual-band modes and a wideband mode from 5 to 7 GHz. Two parallel C-Slots on the patch elements are employed to perturb the surface current paths for excitation of the dual-band and the wideband modes. Two switches, implemented using PIN diodes, are placed on the connecting lines of a simple feed network to the patch elements. Dual-band modes are achieved by switching “ON” either one of the two patch elements, while the wideband mode with an impedance bandwidth of 33.52% is obtained by switching “ON” both patch elements. The frequencies in the dual-band modes can be independently controlled using positions and dimensions of the C-Slots without affecting the wideband mode. The advantage of the proposed antenna is that two dual-band operations and one wideband operation can be achieved using the same dimensions. This overcomes the need for increasing the surface area normally incurred when designing wideband patch antennas. Simulation results are validated experimentally through prototypes. The measured radiation patterns and peak gains show stable responses and are in good agreements. Coupling between the two patch elements plays a major role for achieving the wide bandwidth and the effects of mutual coupling between the patch elements are also studied

    Correlations in randomly stacked solids

    Full text link
    Packing of spheres is a problem with a long history dating back to Kepler's conjecture in 1611. The highest density is realized in face-centred-cubic (FCC) and hexagonal-close-packed (HCP) arrangements. These are only limiting examples of an infinite family of maximal-density structures called Barlow stackings. They are constructed by stacking triangular layers, with each layer shifted with respect to the one below. At the other extreme, Torquato-Stillinger stackings are believed to yield the lowest possible density while preserving mechanical stability. They form an infinite family of structures composed of stacked honeycomb layers. In this article, we characterize layer-correlations in both families when the stacking is random. To do so, we take advantage of the H\"agg code -- a mapping between a Barlow stacking and a one-dimensional Ising magnet. The layer-correlation is related to a moment-generating function of the Ising model. We first determine the layer-correlation for random Barlow stacking, finding exponential decay. We next introduce a bias favouring one of two stacking-chiralities -- equivalent to a magnetic field in the Ising model. Although this bias favours FCC ordering, there is no long-ranged order as correlations still decay exponentially. Finally, we consider Torquato-Stillinger stackings, which map to a combination of an Ising magnet and a three-state Potts model. With random stacking, the correlations decay exponentially with a form that is similar to the Barlow problem. We discuss relevance to ordering in clusters of stacked solids and for layer-deposition-based synthesis methods.Comment: 6 page
    • …
    corecore